Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell.

نویسندگان

  • W Justin Youngblood
  • Seung-Hyun Anna Lee
  • Yoji Kobayashi
  • Emil A Hernandez-Pagan
  • Paul G Hoertz
  • Thomas A Moore
  • Ana L Moore
  • Devens Gust
  • Thomas E Mallouk
چکیده

Iridium oxide nanoparticles stabilized by a heteroleptic ruthenium tris(bipyridyl) dye were used as sensitizers in photoelectrochemical cells consisting of a nanocrystalline anatase anode and a Pt cathode. The dye coordinated the IrO(2) x nH(2)O nanoparticles through a malonate group and the porous TiO(2) electrode through phosphonate groups. Under visible illumination (lambda > 410 nm) in pH 5.75 aqueous buffer, oxygen was generated at anode potentials positive of -325 mV vs Ag/AgCl and hydrogen was generated at the cathode. The internal quantum yield for photocurrent generation was ca. 0.9%. Steady-state luminescence and time-resolved flash photolysis/transient absorbance experiments were done to measure the rates of forward and back electron transfer. The low quantum yield for overall water splitting in this system can be attributed to slow electron transfer (approximately 2.2 ms) from IrO(2) x nH(2)O to the oxidized dye. Forward electron transfer does not compete effectively with the back electron transfer reaction from TiO(2) to the oxidized dye, which occurred on a time scale of 0.37 ms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2.

A photoelectrochemical device with a molecular Ru catalyst assembled via pH-modified Nafion on a dye-sensitized nanostructured TiO(2) film as anode and a Pt foil as cathode has been successfully demonstrated to split water into O(2) and H(2) driven by visible light.

متن کامل

Correction for Swierk et al., Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells.

Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO...

متن کامل

Dynamics of Electron Recombination and Transport in Water- Splitting Dye-Sensitized Photoanodes

Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) use visible light to split water using molecular sensitizers and water oxidation catalysts codeposited onto mesoporous TiO2 electrodes. Despite a high quantum yield of charge injection and low requirement for the catalytic turnover rate, the quantum yield of water splitting in WS-DSPECs is typically low (<1%). Here we examine...

متن کامل

Photovoltage Effects of Sintered IrO2 Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells

Water-splitting dye-sensitized photoelectrochemical cells (WSDSPECs) utilize high surface area TiO2 electrodes functionalized with light absorbing sensitizers and water oxidation catalysts. Because water splitting requires vectorial electron transfer from the catalyst to the sensitizer to the TiO2 surface, attaching both sensitizer and catalyst to TiO2 in the correct sequence and stabilizing th...

متن کامل

Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors.

Photocatalytic splitting of water into H(2) and O(2) under visible light irradiation is achieved using a coumarin-dye-adsorbed lamellar niobium oxide for hydrogen evolution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2009